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Abstract. When a crystal-structure type is represented in a high-dimensional parameter 
space, a restricted region is shown to be necessary and sufficient to express all the possible 
types just as a first Brillouin zone can do this in the lattice-vibration theory. A systematic 
method is presented to find the region with the aid of a computer. As an example, the 
method is applied to the Bravais lattice types and the eight inequalities are obtained which 
bound the region. 

1. Introduction 

In order to investigate various crystal structures theoretically, it is best to project them 
as the points in a high-dimensional parameter space. This idea can be realised easily, 
but has not been used very often. The projection is usually in one-to-many correspon- 
dence so that no crystal structure is specified uniquely in the space. The main purpose 
of the present paper is to remove this fault. For example, let us consider a crystal of 
the Bravais lattice type which consists of one atom per primitive cell. The three edge 
vectors a, b, E of a primitive cell determine the structure uniquely. They are represented 
most conveniently by their lengths (a ,  b, c )  and the angles between them (a, p, y ) .  
However the choice of a primitive cell is not unique, so that there can be many other 
sets of parameters (a ,  6, c ;  a, p, y )  corresponding to the same crystal. This arbitrariness 
often makes it difficult to determine whether any two given crystals are equivalent or 
not when they are represented differently by the parameters. Obviously there must be 
some restrictive conditions on the choice of a primitive cell to specify the crystal 
uniquely. These conditions limit the parameter space within the necessary and sufficient 
region to represent all the possible types. The situation is very similar to the representa- 
tion of lattice vibrations in reciprocal space where the first Brillouin zone is necessary 
and sufficient to express all the possible modes of vibration. However in the present 
case such conditions cannot be found so easily because we must deal with at least 
six-dimensional space which exceeds our usual ability of visualisation. (The parameter 
space of the two-dimensional Bravais lattice type is three dimensional, and so the 
restricted region is obtained rather easily (Hosoya 1979).) In the present paper we 
obtain the region using a group-theoretical treatment. 

2. Representation matrices 

First it is necessary to chocse the most convenient set of parameters. As will be seen 
later, the conventional set (a ,  b, c ;  a, /3, y )  does not suit our group-theoretical treatment, 
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since it cannot be a basis of any representation matrices. (This can easily be seen from 
the difference between the former three parameters and the others in their dimensions.) 
The set of (a ,  b, c )  itself is often useful and will be used below in some cases, but has 
the disadvantage of redundance. Its explicit description contains nine components, 
but the three degrees of freedom are assigned to the rotation of the primitive cell as 
a whole, which has no meaning in the present consideration. Thus we should use a 
set of six components. We find the following inner products best: 

A = * a . a  B = * b *  b c = * c . c  

D = * b * c  E = * c - u  F = * a *  b. (1) 
Here the sign is chosen according to whether the coordinate system of (a, b, c )  is right- 
or left-handed. In other words, the sign is equivalent to the coefficient a - b x c/la * b x cI. 
Physically, the parameters must fulfil the following conditions in order to construct a 
primitive cell: 

p+y2CZ ( 2 )  
y+CZ2p (3) 
CZ+p>y.  (4) 

CO~-'[E/~CA)''~]+CO~-'[F/(AB)''~]~C~~-'[D/(BC)''~] ( 5 )  

~O~-'[F/(AB)''']+C~~"[D/(BC)"~]~CO~-'[E/(CA)''~] (6) 
CO~-'[D/(BC)''~]+CO~-'[E/(CA)''~]~CO~-'[F/(AB)''~]. (7) 

These are derived from the following relations: 

We must recognise that the above six-dimensional space is a representation space 
of a certain group and the region to be found is a fundamental region of the group. 
The group was denoted the group of primitive transformations in the previous paper 
of the author (Hosoya 1979). It is essentially a transformation group of primitive cells 
or some other equivalent objects (Hosoya 1979, 1980). In the present case, the 
operations are the affine mapping of the Bravais lattice onto itself, which creates an 
infinite group. The group is most simply represented by the following 3 x 3 matrices 
t operating on (a ,  b, c)  whose components tij  are all indices: 

They are easily translated to 6 x 6 matrices T operating on the above six-dimensional 
position vectors as follows: 

TI 2 

T22 

T42 

T3 2 

T5 2 

T6 2 

3 

T23 

T33 

T43 

T53 
T6 3 

4 

T24 

7-34 

T44 
T54 

T64 

5 

T2 5 

T35 T45 

Ts5 
T6S 
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The matrices t and T are in two-to-one correspondence, for t and - f  give the 
same T. However this disadvantage is easily removed as will be shown below. 

Some element T keeps a point in the six-dimensional space. Thus we can assign 
such an element to a particular geometrical object (point, line, plane, etc) which is 
invariant under its operation, just as an inversion centre, a rotational axis or a mirror 
plane (Hahn 1983). We shall hereafter call such a geometrical alternative an element. 
On the special positions several elements are located simultaneously. We can find the 
generating elements of the whole group among the elements on a few special positions. 

Such a special position can be found with the knowledge of the hierarchy of the 
Bravais lattices (Hosoya 1979). Among the 14 Bravais lattice types, simple cubic ( sc ) ,  
face-centred cubic (FCC), body-centred cubic ( BCC) and hexagonal (HEX)  are the 
most symmetrical; the others can be derived as subgroups of these four types. Their 
primitive-cell vectors can be chosen as in figure 1. (The choice is fit for the present 
purpose.) Their Cartesian coordinates are as follows, where the parameters a,, a2, a 3 ,  
a4 and c are arbitrary positive values: 

c=(a2, a2,O) 

a = (a33 a3, a31 body-centred cubic 

c = (0, 0, 2a3) 

hexagonal a = (0, 0, c )  

b = (2a4, 0,O) 

c = (a4, a a 4 ,  0). 

They are represented in our new space as follows: 

Here x,, x2, x3, x4 and y are arbitrary positive values which are related to a , ,  a,, 
a 3 ,  a4 and c. These six-component vectors can be regarded as defining the position 
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0 0 1 0 0 0  
1 0 0 0 0 0  
0 0 0 0 1 0  
0 0 0 0 0 1  

1 0 0  0 1 0  0 

(a !  

1 0 0 0  0 0  
0 0 1 0 0 0  

0 0 0 0 - 1  0 

I C 1  

ib) 

id! 

Figure 1. The edge vectors of the primitive cells for the most symmetrical crystals of the 
Bravais lattice types, ( a )  simple cubic, ( b )  face-centred cubic, ( c )  body-centred cubic and 
( d )  hexagonal. 

of a point in six-dimensional space. The positions of this kind corresponding to sc, 
FCC, BCC and HEX are called the highest symmetrical positions (HSP) below. 

The group of elements which leave the HSP unchanged are easily obtained by the 
corresponding point-group operations. The group for the simple cubic crystal consists 
of 24 elements which are generated from the following two elements: 

c, = 

1 0  1 0 0 0 o \  

1 0  0 0 0 0 - I /  

It should be noticed that our distinctive definition between right- and left-handed 
systems eliminates every improper rotation which brings a system to an enantiomor- 
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TRB = 

phous one. (This restriction also determines the sign of t uniquely for the given T, 
because the determinant of t must be +1 for the proper rotations.) Thus the point 
group of a simple cubic lattice is regarded as 432 instead of m3m. The names of the 
operations are adopted so that they suggest the corresponding point-group operations. 

The groups corresponding to the other three HSP are given more conveniently in 
other spaces than those of (A, B, C, 0, E, F ) .  Thus the coordinate is transformed by 
the following matrices, each corresponding to FCC, BCC and H E X :  

0 0 - 1  1 1  0 
0 0 0 - 1  1 0  

TRF = 

1 1  1 2 - 2 - 2  
1 1  1 - 2  2 - 2  
1 1  1 - 2 - 2  2 
1 - 1 - 1  2 0 0 

-1 1 - 1  0 2 0 
- 1 - 1  1 0  0 2 

1 

0 0 0  0 

0 0  0 
0 0 2/& -1/& 

TRH = 

\ o  --I/& 0 2/& 0 0 1  

The transformations mean the use of new basis vectors which become perpendicular 
to each other when the corresponding type of the highest symmetry is realised. For 
each of sc, FCC and BCC, in its own space, the representation matrices are the same. 
For the hexagonal type the group consists of 12 elements made up from the following 
two generators: 

C6 = 

C ;  = 

1 - 
4 t o  0 0 -814 
4 i o  0 0 &/4 

0 0 0  t &/2 0 
0 0 0 - 8 1 2  4 0 

3 

0 0 1  0 0 0 

1 J5 /4 -&/4  0 0 0 -i 

/ 1 0 0 0 0  

0 0 0 1  0 0  
0 0 0 0 0 - 1  
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Due to elimination of the improper rotations, the point group is 622 instead of 
61 mmm. 

3. Construction of a fundamental region 

The method used below is essentially the same as that of determining the Wigner-Seitz 
cell in the reciprocal space. The boundary of a region is constructed by the set of 
planes which bisect perpendicularly the lines connecting the equivalent points. A 
pivotal point is chosen arbitrarily in the space, and the equivalent points are obtained 
by operating the elements of the group of primitive transformations on the pivotal 
point. We need to operate only the elements which transfer the point into the adjacent 
fundamental regions. Such elements are those of the HSP on the boundaries (figure 
2). This consideration drastically reduces the number of operations to be tried. 
However it is somewhat difficult to find which HSP are located on the boundary. We 
do not even know how many HSP there are on the boundaries. Only a trial and error 
method is applicable. Thus starting from an arbitrarily chosen set of HSP, we determine 
the smallest volume enclosed by the boundaries, in the method stated in detail below. 
Since the result is given by a set of inequalities, we can ascertain if other HSP are 
located within it, by substituting their coordinates into the inequalities. If any other 
HSP is found in the region, we include it into the initial set and try again to get the 
smaller volume. In the present case, after several trials, the set (10)-(13) was found 
to be on the boundary of a certain fundamental region. Other nearby HSP are confirmed 
to be outside the region. Such a procedure is almost impossible without the aid of a 
computer, since we must start from at least four HSP corresponding to sc, FCC, BCC 

and HEX, each of which contains 24, 24, 24 and 12 elements respectively, so that we 
must operate at least 84 matrices at every trial. Thus a simple BASIC program was 
written and used on a personal computer. 

We can obtain the perpendicular bisecting planes rather easily. Once a pivotal 
point is chosen, then its equivalent points are obtained by operating the transformation 
matrices of the HSP on the coordinate vector of the pivot. If a pivotal point 
( A o 2  Bo, CO, Do, Eo,  Fo) is transformed into a point ( A , ,  B, ,  C,, D, ,  E , ,  Fl), the 
equation of the perpendicular bisecting plane is as follows: 

(A0 - AI ) A  + (Bo - B, ) B + ( CO - C,) C + ( Do - 0 1 )  D + (Eo - E , )  E + (Fo - Fl ) F  = 0. 
(21) 

For the HSP other than simple cubic, the equation should be obtained in the transferred 
space where the operation is orthogonal, and then translated into the original space. 

The boundaries are not unique but changeable according to the position of the 
pivotal point (figure 2). We should find the most convenient boundaries by setting 
the pivotal point at an appropriate position. When the pivotal point is at a general 
position, a lot of boundary planes appear and their equations are generally formed by 
non-integer coefficients. However if the pivotal point is at an HSP, the perpendicular 
bisect plane to be constructed by an element of the HSP cannot be defined. Hence 
we first locate the pivotal point at a general position and then make it draw to some 
HSP. At the end of this process, many boundaries coincide with each other and the 
final equations have rather simple coefficients (figure 2). In the present case, the pivotal 
point is taken at (1, 1, 1,0.5,0.5 - d, 0.5 -2d)  and the boundaries are determined at 
the limit of d = 0. The natural boundaries in ( 9 4 7 )  should be also taken into account. 
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Figure 2. Schematic drawing for the construction of a fundamental region. The perpen- 
dicular bisect planes between an arbitrarily chosen pivotal point P and all its equivalent 
points (PI, P,, P,, P4) bound the region. Though the highest-symmetrical positions (HSP)  

(represented by black ovals) are definite, the shape of the region depends on the pivotal 
point. The simplest shape (c )  where P coincides with P4 is most desirable, but is obtained 
only as a limiting case in the series ( a ) - ( b ) - ( c ) .  

Even after the above reduction of the boundaries, there still remain a lot of them, 
most of which are outside the region. Mathematically we have a set of inequalities 
which contains many unnecessary ones, for they can be deduced from the others. In 
order to obtain the true boundaries, we use a Monte Carlo method. A test point is 
located at a position which satisfies all the inequalities, and it is driven step by step 
along a certain line until it encounters a boundary (violates its inequality). Then it is 
reflected into a randomly chosen direction and moved again until it meets with another 
boundary and so on (figure 3). If we continue this procedure for a sufficiently long 
time, we can obtain a set of true boundaries which have been encountered at least 
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Figure 3. Schematic view of the Monte Carlo method used to determine the most inner 
boundaries of the region. 

once. To avoid overlooking the other true boundaries, we inquire whether all of the 
other inequalities are deduced from the present set. 

Finally the following eight inequalities are obtained which bound a fundamental 
region of the Bravais lattice type: 

D -  E 2 0  ( 2 2 )  

E -  F a 0  ( 2 3 )  

B - C  + 5 E  - 5 F 3  0 ( 2 4 )  

C - 2 0 - 2 E + 4 F s O  ( 2 5 )  

A - B  + 2 D - 2 E  a0 ( 2 6 )  

C - 2 E  2 0  ( 2 7 )  
- E + 2 F S O  ( 2 8 )  

CO~-'[E/(CA)~/~]+COS-'[F/(AB)~/~]> cos-'[D/(BC)'"]. ( 2 9 )  

(ai 

1 
D -  

Figure 4. 

F 

t 

0.5 
\E 



A fundamental region of a crystal-structure type 1809 

E 

t ( c l  

Figure 4. The three-dimensional cross sections of the fundamental region obtained here. 
All the hatched lines are parallel to the horizontal plane in each figure. The figures ( a ) ,  
( b )  and ( c )  correspond to the condition ( A  = B = C = l) ,  ( A  = B = 1 and D = E )  and 
( B  = C = 1 and E = F) respectively. The numbers of the boundary equations (22)-(29) 
are written on the corresponding planes. Special positions are also indicated, most of 
which are the highest-symmetrical positions (HSP) or correspond to the two-dimensional 
(flattened) structures. As is seen in 4(c), the region extends infinitely along the A axis, 
which is caused by the distinction between a and b or c in the hexagonal type (figure 1) 
where a can be infinitely elongated keeping b and c finite. 
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The three-dimensional cross sections of this region may help the readers’ compre- 
hension and its future applications (figure 4( a ) - (  c)). 

4. Discussion 

The expansion of the present method to more complex crystals than the Bravais lattice 
type can be done easily by adding atoms into the primitive cell. The inner products 
between the edge vectors a, 6, c and the newly added atomic coordinates are adopted 
as the increased components of the parameter space. The elements of the primitive 
transformations are similarly obtained from those of the HSP. The remaining procedures 
are also analogous. 

Such fundamental regions may have a variety of uses in condensed matter physics, 
especially in the theoretical investigation of phase transitions. Many structural phase 
transitions are regarded to occur by freezing of a soft mode of lattice vibration. Such 
a mode is usually assigned to a particular position in the first Brillouin zone of the 
higher-symmetry phase. However this treatment is impossible in the transitions which 
accompany the complete change of its crystal structure. For example the well known 
transition from face-centred cubic iron to body-centred cubic cannot be treated in this 
way. In such a case the present fundamental region provides a useful alternative tool, 
since it contains both structures simultaneously. Moreover our parameter space can 
be expanded to any dimension, and therefore any transitions may be considered in 
the single parameter space. 

It is an important object in solid state physics to determine the most stable 
crystal-structure type for any given component atoms. Of course much work has been 
done on this subject, which has given some rather useful results. However, almost all 
of the work picks up only several types as possibilities and compares them to each 
other. Thus we have no guarantee against the existence of another type which is more 
stable. For example, only NaCl, CsCl and zincblende types are usually considered to 
obtain the most stability in AB compounds. Such a treatment is obviously insufficient, 
since it does not exhaust even the types of HSP, because there are five more HSP in the 
fundamental region in this case, two of which are tetragonal, while the others are 
hexagonal (Hosoya 1980). Ideally the possible energy of any crystal should be calcu- 
lated as a continual function in its parameter space stated above, and the minimal 
point should be found in it as determining the realised crystal-structure type. Such 
consideration is inevitable in order to obtain a stable structure under pressure, especially 
under uniaxial pressure. However, as far as the author knows, even the Madelung 
constant for ionic AB-type crystals has not been calculated in the whole area of its 
fundamental region. Thus intensive effort should be made in this direction, where the 
exact knowledge of each fundamental region must be given first. 
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